Weboldalunk cookie-kat használhat, hogy megjegyezze a belépési adatokat, egyedi beállításokat, továbbá statisztikai célokra és hogy a személyes érdeklődéshez igazítsa hirdetéseit. További információ
Főoldal Belépés/Regisztráció Egy véletlen kérdés Facebook






Kategória: Közoktatás, tanfolyamok » Házifeladat kérdések

A kérdés

Melyik erősebb kikötés erre az egyenletre?

Van ez az egyenlet: gyök(x-3) = 2-x


Kikötöttük, hogy:


x-3 >= 0 -> x >= 3


És: 2-x >= 0 -> x <= 2


Ennél melyik az erősebb kikötés? melyik fog érvényesülni? Hiszen egymásnak ellent mondanak! Az egyik azt mondja, hogy az x csak nagyobb lehet háromnál. A másik azt mondja, hogy csak azok elfogadhatóak, amelyek kisebbek kettőnél.


De ha x-nek nagyobbnak vagy egyenlőnek kell lennie mint három, akkor a kettő alatti számok rögtön ki is esnek! Hiszen a kikötést az egész egyenletre írjuk, nem csak az egyik felére! Hogy is van ez?



  júl. 26. 16:57  Privát üzenet  

A válaszok
1 2
2*Sü nevű felhasználó válasza:

> Ennél melyik az erősebb kikötés?


Erősebb? Mindkettő ugyanolyan „erős” kikötés. A kikötés az kikötés.


> melyik fog érvényesülni?


Mindkettő.


> Hiszen egymásnak ellent mondanak!


Ebből következően nincs olyan x, ami megfelelne mindkét kikötésnek, így az egyenletnek nincs megoldása. És itt vége is a történetnek. (Pont az a becsapós ebben a feladatban, hogy ha nem teszed meg a megfelelő kikötéseket, akkor nem valódi megoldásokat fogsz kapni.)


> Hiszen a kikötést az egész egyenletre írjuk, nem csak az egyik felére!


Kikötést az x-re írjuk fel. Vagy más nézőpontból nézve olyan kifejezésre, műveletre, aminél az értelmezési tartomány vagy az értékkészlet egy jól meghatározott intervallumra esik, ami nem a ]-∞,∞[ intervallum.



A válasz 39%-ban hasznosnak tűnik. A válaszíró 88%-ban hasznos válaszokat ad.
# 1/19Időpont júl. 26. 17:17 Privát üzenet
Hasznos számodra ez a válasz?
Én régen tanultam matekot, és akkor még a -5 négyzete is +25 volt. Most mennyi?

A válasz 0%-ban hasznosnak tűnik. A válaszíró 63%-ban hasznos válaszokat ad.
# 2/19Időpont júl. 26. 17:29 Privát üzenet
Hasznos számodra ez a válasz?
Ugyan jelezze(zék) már az(ok) a tiprottagyú barom(ok), aki(k) szerint a (-5)^2 nem +25, hogy szerintük mégis mennyi? Kösz!

A válasz 0%-ban hasznosnak tűnik. A válaszíró 63%-ban hasznos válaszokat ad.
# 3/19Időpont júl. 26. 18:51 Privát üzenet
Hasznos számodra ez a válasz?
Röhejesek vagytok!

A válasz 0%-ban hasznosnak tűnik. A válaszíró 63%-ban hasznos válaszokat ad.
# 4/19Időpont júl. 26. 19:39 Privát üzenet
Hasznos számodra ez a válasz?
2*Sü nevű felhasználó válasza:

-5 négyzete valóban +25. De egy (nemnegatív) szám négyzetgyöke alatt azt a !nemnegatív! számot értjük, aminek a négyzete az eredeti szám. Tehát:

a = √b ⟺ a² = b, ahol a≥0 és b≥0


Szóval…:

5² = 25

-5² = 25

√25 = 5

Viszont:

√25 ≠ -5


Ha mindkettő gyökre szükség van, azt külön szoktuk jelölni:

±√25 = -5, +5


Ergo a kikötések jól. Negatív számból nem lehet gyököt vonni, tehát:

x-3≥0

x≥3


Egy szám négyzetgyöke sem lehet negatív a négyzetgyök definíciója miatt, tehát:

2-x≥0

2≥x

x≤2


~ ~ ~


Hogy miért értjük egy szám négyzetgyöke alatt csak a pozitív megoldást? Mert a legtöbb esetben így praktikus. Aki nem hiszi, járjon utána:

[link]

[link]



A válasz 100%-ban hasznosnak tűnik. A válaszíró 88%-ban hasznos válaszokat ad.
# 5/19Időpont júl. 26. 20:26 Privát üzenet
Hasznos számodra ez a válasz?
A kérdező kommentje:

2*Sü, ha megkérlek, utána számolnál, hogy az egyenletben gyök(x-3) = 2-x neked is gyök alatt -3 jön ki, ha a másodfokú megoldóképlettel csinálod?

# 6/19Időpont júl. 26. 21:45 Privát üzenet
2*Sü nevű felhasználó válasza:

Oké, oldjuk meg az egyenletet a kikötések – elfogadhatatlan, felháborító – elhagyásával. :-)


√(x-3) = 2-x

x-3 = (2-x)²

x-3 = 4 - 4x + x²

0 = 7 - 5x + x²


A másodfokú egyenlet megoldóképletében a diszkrimináns:

D = b² - 4ac = (-5)² - 4*1*7 = 25 - 28 = -3


Persze kihozhatod a végén így is:

-x² + 5x - 7 = 0


A diszkriminánson ez mit sem változtat:

D = b² - 4ac = 5² - 4*(-1)*(-7) = 25 - 28 = -3



A válaszíró 88%-ban hasznos válaszokat ad.
# 7/19Időpont júl. 26. 23:09 Privát üzenet
Hasznos számodra ez a válasz?
A kérdező kommentje:

Akkor jól csináltam! Nekem is -3 lett a diszkrimináns! De azzal, hogy elkezdtem megoldani az egyenletet, a kikötést miért hagytam volna el? Attól, hogy a kikötésből egyértelműen látszik, hogy nincs megoldása egy egyenletnek, még elkezdhetjük próbából megoldani! Nem?

# 8/19Időpont júl. 26. 23:14 Privát üzenet
2*Sü nevű felhasználó válasza:

Nézzünk egy baromi egyszerű példát:


x-1 = √4


Oké, rossz napunk van, fáradtak vagyunk, nem vesszük észre, hogy a feladat megoldható négyzetre emelés nélkül:

x-1 = 2

x = 3


Nem vettük észre ezt, és ezért elkezdjük máshogy megoldani:


Itt kell tenni egy kikötést:

x-1≥0

x≥1


Ugye mivel a bal oldalon egy nemnegatív szám szerepel, így a jobb oldalon is egy nemnegatív számnak kell szerepelnie. Máshogy nem lehet. De itt van olyan x, ami meg tud felelni a kikötésnek, tehát itt folytatni kell a megoldást.


Nézzük mi történik, mikor négyzetre emeljük az egyenlet két oldalát:

(x-1)² = 4

x² - 2x + 1 = 4

x² - 2x - 3 = 0


Ha behelyettesítjük a másodfokú egyenlet megoldóképletébe, ezt kapjuk:

x₁ = -1

x₂ = 3


Remek, helyettesítsük vissza:


I.

x-1 = √4

(-1)-1 = √4

-2 = √4

-2 = 2


Hoppá. Mi történt itt pontosan? Ez a megoldás nem felelt meg a feltételnek. Mi volt a feltétel?

x ≥ 1

Viszont x₁ < 1.

Akkor itt bizony az egyenlet bal oldalán egy negatív szám lesz, a jobb oldalán a gyökvonás definíciója szerint meg egy nemnegatív számnak kell lennie. Ez egy egyenlőtlenség.

-2 ≠ 2

De ha mindkét oldalt négyzetre emeljük, ebből az egyenlőtlenségből egyenlőség lesz:

(-2)² = 2²

4 = 4


Ez itt a gond. Ami a megoldás során egyenlőséggé vált a négyzetre emeléssel, az eredetileg egy egyenlőtlenség volt. Ezért szabad csak akkor négyzetre emelni egy egyenlőség mindkét oldalát, ha vagy mindkét oldal nemnegatív, vagy mindkét oldal nempozitív. Mert ha az egyenlőség egyik oldala pozitív, a másik negatív, az nem lehet egyenlő ugye, de egy négyzetre emelés során egyenlővé válik az egyenlet két oldala.


~ ~ ~ ~ ~ ~ ~


A kikötésnek eleget nem tevő megoldás tehát mindenképpen egy hamis gyököt, hamis megoldást fog adni. Ha nincs olyan x, ami megfelelhetne a kikötésnek, akkor még ha megoldható is lenne az egyenlet, a megoldásai hamis gyökök lesznek, amikre az egyenlet nem fog fennállni. Ezért nincs is értelme megoldani az egyenletet, hiszen tudjuk, hogy nem lehet valós megoldása.


Nézzünk egy másik példát:


√(2x²+2) = x-3


Itt a bal oldalon egy nemnegatív szám áll, tehát a jobb oldalon is egy nemnegatív számnak kell szerepelnie, különben nem fog igaz lenni az egyenlet. Ezért kell egy kikötés:

x-3≥0

x≥3


Ha most négyzetre emeljük az egyenlet két oldalát – ami ugye veszélyes üzem, mert egyenlőtlenségből is egyenlőséget tud csinálni, lásd -2 ≠ 2, de (-2)² = 2² ahogy fentebb rámutattam –, a következőt kapjuk:

2x² + 2 = (x-3)²

2x² + 2 = x² - 6x + 9

x² + 6x - 7 = 0


Megoldva:

x₁ = -7

x₂ = 1


Egyik sem felel meg a kikötésnek, de nézzük meg, mi van, ha visszahelyettesítjük:


√(2x²+2) ≟ x-3

√(2(-7)²+2) ≟ (-7)-3

√100 ≟ -10

10 ≠ -10

Ugye itt az történt, hogy ennek a 10 = -10 egyenlőtlenség mindkét oldalának vettük a négyzetét, ami 100 = 100 -á alakult, ami mindjárt egyenlőség.


Nézzük a másik megoldást:

√(2x²+2) ≟ x-3

√(2*1²+2) ≟ 1-3

√4 ≟ -2

2 ≠ -2

(Ugyanaz történt.)


Tehát hiába oldottad meg az egyenletet, egyik megoldás sem felelt meg a kikötésnek, így ezek szükségszerűen és elkerülhetetlenül hamis gyököket adtak.


~ ~ ~


Röviden: Ha a kikötésnek már eleve nem felelhet meg egyetlen szám sem, akkor bármi is jönne ki a megoldásból, az hamis gyök lenne látatlanul is. Így semmi értelme nincs megoldani az egyenletet, az csak időpocsékolás.



A válaszíró 88%-ban hasznos válaszokat ad.
# 9/19Időpont júl. 27. 11:22 Privát üzenet
Hasznos számodra ez a válasz?
Ez a lebutítás általános, és középiskoláknak szól, vagy egyetemeken is ezt tanítják?

A válasz 0%-ban hasznosnak tűnik. A válaszíró 63%-ban hasznos válaszokat ad.
# 10/19Időpont júl. 27. 11:57 Privát üzenet
Hasznos számodra ez a válasz?
1 2

Értesítsünk róla, ha új válasz érkezik? Válasz küldése



Kapcsolódó kérdések
Matek másodfokú egyenletre visszavezethető szöveges feladat?
Viete-formulák vannak harmadfokú egyenletre is?
Hermite diff. Egyenletre feladatok érdekelnének ill. a leírása. Hol lehetne utánnanézni?
Mikor kapunk egy egyenletre hamis gyököt?
Milyen azonosság illik erre az egyenletre?
Segítene nekem valaki? Egyszerűen nem jön ki a megfelelő eredmény erre az egyenletre. 0,1=x/ (1000+x) A megoldókulcsban 111,1 szerepel megoldásként, de nekem mindig 0,9 lesz az...

Kérdések a Közoktatás, tanfolyamok rovatbólKérdések a Házifeladat kérdések rovatból








Minden jog fenntartva © 2018, www.gyakorikerdesek.hu | GYIK | Szabályzat | Jogi nyilatkozat | Adatvédelem | Sitemap | WebMinute Kft. | Kapcsolat: info (kukac) gyakorikerdesek.hu

A weboldalon megjelenő anyagok nem minősülnek szerkesztői tartalomnak, előzetes ellenőrzésen nem esnek át, az üzemeltető véleményét nem tükrözik.
Ha kifogással szeretne élni valamely tartalommal kapcsolatban, kérjük jelezze e-mailes elérhetőségünkön!